STAT 302 – Introduction to Probability

Assignment 3 – DUE: 14 November 2025

SURNAME	First Name	
Signature	Student ID	

Problem	Points	max.
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
9		10
10		10
Total:		100

Problem 1 [10 points]

On a specific day, a car salesperson has scheduled 2 sales appointments. His first appointments lead to a sale with probability 0.3, and second ones lead independently to a sale with probability 0.6. Any sale made is equally likely to be either for a high-end car with a \$120,000 sale price, or an economy car which costs \$35,000. Let X be the dollar amount of the salesperson total sales for this day. Compute $\mathbb{E}(X)$.

Solution:

First, determine $\mathcal{R}_X = \{\$0,\$35K,\$70K,\$120K,\$155K,\$240K\}$ (to simplify the notation, and since there is no ambiguity, we will ignore the "\$" sign, and the K units, from now on). In other words, we can work with Y = X/1000 and then $\mathcal{R}_Y = \{0,35,70,120,155,240\}$. Clearly, $\mathbb{E}[X] = \mathbb{E}[1000 \times Y] = 1000 \times \mathbb{E}[Y]$.

Let $S_1=1$ if a sale occurs in their first appointment ($S_1=0$ otherwise), and let S_2 be another random variable, independent from S_1 , such that $S_2=1$ if a sale occurs in the second appointment ($S_2=0$ otherwise). Let C be a random variable such that $\mathbb{P}(C=35)=\mathbb{P}(C=120)=1/2$, which indicates what car is sold. Now Y=0 if and only if $S_1=S_2=0$. This event has $\mathbb{P}(Y=0)=\mathbb{P}(S_1=0,S_2=0)=\mathbb{P}(S_1=0)\times\mathbb{P}(S_2=0)=(1-0.3)\times(1-0.6)=0.28$ (because of the independence between S_1 and S_2). Next, $\{Y=35\}=\{S_1=1,S_0=0,C=35\}\cup\{S_1=0,S_0=1,C=35\}$, and these two events are disjoint. We have

$$\mathbb{P}(Y = 35) = \mathbb{P}(S_1 = 1, S_0 = 0, C = 35) + \mathbb{P}(S_1 = 0, S_0 = 1, C = 35)$$

$$= \mathbb{P}(C = 35|S_1 = 1, S_0 = 0)\mathbb{P}(S_1 = 1, S_0 = 0) + \mathbb{P}(C = 35|S_1 = 0, S_0 = 1)\mathbb{P}(S_1 = 0, S_0 = 1)$$

$$= (1/2) \times 0.3 \times 0.4 + (1/2) \times 0.7 \times 0.6 = (1/2)0.12 + (1/2)0.42 = 0.27$$

Similarly, $\mathbb{P}(Y=120)=0.27$, $\mathbb{P}(Y=70)=\mathbb{P}(Y=240)=0.045$, and $\mathbb{P}(Y=155)=0.09$. As a quick sanity check, note that 0.28+0.27+0.27+0.045+0.045+0.09=1. Simple arithmetic then gives

$$\mathbb{E}[Y] = 0 \times 0.28 + 35 \times 0.27 + 70 \times 0.045 + 120 \times 0.27 + 155 \times 0.09 + 240 \times 0.045 = 69.75$$
 And thus: $\mathbb{E}[X] = \$1000 \times \mathbb{E}[Y] = \69750 .

Problem 2 [10 points]

Suppose there are 2 urns. Urn number 1 contains 100 chips: 30 are labelled 1's, 40 are labelled 2's, and 30 are labelled 3's. Urn number 2 contains 100 chips: 20 are labelled 1's, 50 are labelled 2's, and 30 are labelled 3's. A coin is tossed and if a head is observed then a chip is randomly drawn from Urn 1, otherwise a chip is drawn from Urn 2. Let Y be the value of the drawn chip. If the occurrence of a head on the coin is denoted by X = 1, a tail by X = 0, and $X \sim Bi(1, 3/4)$, find:

- (a) $\mathbb{E}(X|Y)$
- (b) $\mathbb{E}(Y|X)$

- (c) $\mathbb{E}(Y)$
- (d) $\mathbb{E}(X)$

Solution:

(a) We need to find $\mathbb{P}(X=1|Y=k)=1-\mathbb{P}(X=0|Y=k)$ for k=1,2,3. Since we can compute $\mathbb{P}(Y=k|X=1)$ and $\mathbb{P}(Y=k|X=0)$ (because X indicates which urn is used), then we will use that

$$\mathbb{P}(X = 1 | Y = k) = \mathbb{P}(Y = k | X = 1)\mathbb{P}(X = 1)/\mathbb{P}(Y = k)$$

The two terms in the denominator are known, for $\mathbb{P}(Y=k)$ we have

$$f_Y(k) = \mathbb{P}(Y = k) = \mathbb{P}(Y = k|X = 1)\mathbb{P}(X = 1) + \mathbb{P}(Y = k|X = 0)\mathbb{P}(X = 0)$$

Thus, $f_Y(1) = (30/100)(3/4) + (20/100)(1/4) = 11/40$, $f_Y(2) = (40/100)(3/4) + (40/100)(1/4) = 17/40$, and $f_Y(3) = (30/100)(3/4) + (30/100)(1/4) = 12/40$. Hence

$$\mathbb{P}(X=1|Y=1) = \mathbb{P}(Y=1|X=1)\mathbb{P}(X=1)/\mathbb{P}(Y=1) = (30/100)(3/4)/(11/40) = 9/11$$

and

$$\mathbb{P}(X=0|Y=1) = \mathbb{P}(Y=1|X=0)\mathbb{P}(X=0)/\mathbb{P}(Y=1) = (20/100)(1/4)/(11/40) = 2/11$$

so that $\mathbb{E}(X|Y=1)=0\times 2/11+1\times 9/11=9/11$. Similar calculations give

$$\mathbb{P}(X=1|Y=2) = 12/17, \qquad \mathbb{P}(X=0|Y=2) = 5/17$$

and

$$\mathbb{P}(X=1|Y=3)=3/4, \qquad \mathbb{P}(X=0|Y=3)=1/4$$

Hence $\mathbb{E}(X|Y=2)=12/17$ and $\mathbb{E}(X|Y=3)=3/4$.

For (b), we have $f_{Y|X=1}$ and $f_{Y|X=0}$, so that $E(Y|X=1)=1\times(30/100)+2\times(40/100)+3\times(30/100)=30/100+80/100+90/100=2$ and E(Y|X=0)=1(2/10)+2(5/10)+3(3/10)=21/10.

For (c), since we computed f_Y in part (a), we can calculate $\mathbb{E}[Y] = 1 \times 11/40 + 2 \times 17/40 + 3 \times 12/40 = 81/40$. As a quick sanity check, we can verify that $\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[Y|X=1]\mathbb{P}(X=1) + \mathbb{E}[Y|X=0]\mathbb{P}(X=0) = 2 \times 3/4 + (21/10)(1/4) = 60/40 + 21/40 = 81/40 = \mathbb{E}[Y]$.

For (d), $\mathbb{E}[X] = 3/4$, because $X \sim Bi(1,3/4)$, or simply $E[X] = \mathbb{P}(X=1) = 3/4$. As a quick sanity check, we can verify that $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X|Y=1]\mathbb{P}(Y=1) + \mathbb{E}[X|Y=2]\mathbb{P}(Y=2) + \mathbb{E}[X|Y=3]\mathbb{P}(Y=3) = (9/11)(11/40) + (12/17)(17/40) + (3/4)(12/40) = 9/40 + 12/40 + 9/40 = 3/4 = \mathbb{E}[X]$.

Problem 3 [10 points]

The monthly worldwide average number of nuclear plant critical incidents is 3.5. Let X be the number of upcoming consecutive incident-free quarters, starting in 2026. There are 4 quarters in a year. In other words, X is the number of incident-free quarters observed in a row, starting January 1, 2026, say. For example, if the next incident occurs after 10 months, then X=3. If X=2, there were no incidents in the first 6 months, and at least one incident between months 6 and 9. What is $\mathbb{E}(X)$?

Solution:

Let Y be the number of events in a quarter (a 3-month period), then $Y \sim \mathcal{P}(10.5)$. Since the number of events in disjoint periods of time are independent random variables, then we can think of the binomial experiment of observing whether a quarter is incident-free or not. Each of those "experiments" have constant probability of "success" $p = \mathbb{P}(Y=0) = e^{-10.5}$, and then if X is the number of incident-free quarters in a row, then X=W-1, where W counts how many "experiments" we need to run until we see our first incident, then $W \sim Geom(1-p)$ (a success is having an incident in a quarter, which has probability $q = \mathbb{P}(Y>0) = 1 - \mathbb{P}(Y=0) = 1 - e^{-10.5}$) Then $\mathbb{E}[W] = 1/q = 1/(1-e^{-10.5}) = e^{10.5}/(e^{10.5}-1)$ and $\mathbb{E}[X] = \mathbb{E}[W]-1 = e^{10.5}/(e^{10.5}-1)-1 = 1/(e^{10.5}-1) = 2.753721e - 05$, almost zero.

Problem 4 [10 points]

Consider a box containing the 13 diamond cards from a regular deck of cards. Assume, for simplicity, that they are numbered 1, 2, . . . , 13. We randomly draw 3 cards without replacement. Let X be the lowest card face (number) in the draw, and Y be the highest card face in the draw. Prove whether X and Y are independent.

Solution:

It would be sufficient to find a pair k_1 and k_2 with $\mathbb{P}(X=k_1,Y=k_2) \neq \mathbb{P}(X=k_1) \times \mathbb{P}(Y=k_2)$. Note that when X=Y then, all 3 cards must have the same face value. The sample space is all possible triples of cards, with a total of $52 \times 51 \times 50$ equally likely outcomes. Then, for example $\mathbb{P}(X=1,Y=1)$ is the probability that the 3 drawn cards have the face value 1, there are $4 \times 3 \times 2$ such possible outcomes. Furthemore, note that if $\{Y=1\}$, then all cards must be ones, and in particular, $\{X=1\}$ as well, thus $\{Y=1\} \subseteq \{X=1\}$, and then $\{X=1\} \cap \{Y=1\} = \{Y=1\}$, so that $\mathbb{P}(X=1,Y=1) = \mathbb{P}(Y=1)$. Since clearly $\mathbb{P}(X=1) < 1$ (because there are outcomes where the minimum face value is higher than 1), then $\mathbb{P}(X=1,Y=1) = \mathbb{P}(Y=1) > \mathbb{P}(Y=1) \times \mathbb{P}(Y=1)$ and thus X and Y are not independent.

Problem 5 [10 points]

Let $X \sim \mathcal{P}(\lambda)$ for some $\lambda > 0$. We have $Y|X = k \sim Bi(k,p)$, where $p \in (0,1)$. Prove that $X|Y = 0 \sim \mathcal{P}(\lambda(1-p))$.

Solution:

Since $\mathcal{R}_X = \mathbb{N}$, let's try to calculate $\mathbb{P}(X = k | Y = 0)$ for $k \in \mathbb{N}$. We have, for any $k \in \mathbb{N}$:

$$\begin{split} \mathbb{P}(X=k|Y=0) &= \mathbb{P}(Y=0|X=k) \times \mathbb{P}(X=k)/\mathbb{P}(Y=0) \\ &= \frac{\binom{k}{0}p^0(1-p)^k \times e^{-\lambda}\lambda^k/k!}{e^{-\lambda p}} \\ &= \frac{\left[(1-p)\lambda\right]^k e^{\lambda p - \lambda}}{k!} = e^{-\lambda(1-p)} \frac{\left[(1-p)\lambda\right]^k}{k!} \end{split}$$

where we have used that under the conditions of the problem, $\mathbb{P}(Y=0)=e^{-\lambda p}$. To show this, simply calculate it:

$$\mathbb{P}(Y = 0) = \sum_{k=0}^{\infty} \mathbb{P}(Y = 0, X = k) = \sum_{k=0}^{\infty} \mathbb{P}(Y = 0 | X = k) \mathbb{P}(X = k)$$

$$= \sum_{k=0}^{\infty} {k \choose 0} p^0 (1 - p)^k e^{-\lambda} \lambda^k / k!$$

$$= e^{-\lambda} \sum_{k=0}^{\infty} \left[(1 - p) \lambda \right]^k / k! = e^{-\lambda} e^{(1-p)\lambda} = e^{-\lambda p}$$

Finally, note that the PMF above for X|Y=0 is that of a $\mathcal{P}\left([(1-p)\lambda]\right)$ random variable.

Problem 6 [10 points]

Find:

(a)
$$\mathbb{E}[(X-2)^2]$$
, if $\mathbb{E}(X)=0$ and $Var(X)=2$.

(b)
$$Var(5X^2)$$
, if $\mathcal{R}_X = \{-1, 0, 1\}$, $\mathbb{E}(X) = 0$, and $Var(X) = 1/2$.

(c)
$$V(a^Y)$$
, if $a > 0$ and $Y \sim \mathcal{P}(\lambda)$, for some $\lambda > 0$.

Solution:

For (a): From the MT, $\mathbb{E}[(X-2)^2]=(\mathbb{E}[X]-2)^2+V(X)=(0-2)^2+2=6$. For (b): $\mathrm{Var}(5X^2)=25\mathrm{Var}(X^2)=25\left[E[(X^2)^2]-(E[X^2])^2\right]=25\left[E[X^4]-(E[X^2])^2\right]$. Note that $E[X^4]=(-1)^4\,\mathbb{P}(X=-1)+0^4\,\mathbb{P}(X=0)+1^4\,\mathbb{P}(X=1)=(-1)^2\,\mathbb{P}(X=-1)+0^2\,\mathbb{P}(X=0)+1^2=\mathbb{E}[X^2]=\mathrm{Var}(X)+(\mathbb{E}[X])^2=1/2$. Also $(\mathbb{E}[X^2])^2=(1/2)^2=1/4$. Thus $\mathrm{Var}(5X^2)=25\left[E[X^4]-(E[X^2])^2\right]=25\left[\mathbb{E}[X^2]-(E[X^2])^2\right]=25[1/2-1/4]=25/4$. For (c), $\mathrm{Var}(a^Y)=\mathbb{E}((a^Y)^2)-(\mathbb{E}[a^Y])^2=\mathbb{E}((a^2)^Y)-(\mathbb{E}[a^Y])^2$. For any b>0 we have

$$\mathbb{E}[b^Y] = \sum_{k=1}^{\infty} b^k \mathbb{P}(Y = k) = \sum_{k=1}^{\infty} b^k e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= \sum_{k=1}^{\infty} e^{-\lambda} \frac{(\lambda b)^k}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} \frac{(\lambda b)^k}{k!}$$
$$= e^{-\lambda} e^{\lambda b} = e^{\lambda(b-1)}$$

Thus, $\mathbb{E}[a^Y] = e^{\lambda(a-1)}$ and $\mathbb{E}((a^Y)^2) = \mathbb{E}((a^2)^Y)] = e^{\lambda(a^2-1)}$. Finally $\text{Var}(a^Y) = \mathbb{E}((a^Y)^2) - (\mathbb{E}[a^Y])^2 = e^{\lambda(a^2-1)} - e^{2\lambda(a-1)}$

Problem 7 [10 points]

We roll a fair 6-sided die. Let X be its observed value. We then we toss X fair coins, and let Y be the number of heads obtained. Using a computer if necessary, find $\mathbb{E}(Y)$ and $\mathbb{E}(X|Y=0)$.

Solution:

First note that $\mathcal{R}_Y = \{0, 1, 2, \dots, 6\}$ (because $\mathcal{R}_X = \{1, 2, \dots, 6\}$, and Y is the number of heads obtained from X coin tosses). To compute $\mathbb{E}[Y]$, we can find the pdf of Y by calculating $\mathbb{P}(Y = k)$ for $k = 0, \dots, 6$. By the "Total Probability Theorem", we have

$$\mathbb{P}(Y = k) = \sum_{n=1}^{6} \mathbb{P}(Y = k | X = n) \mathbb{P}(X = n), \qquad k = 0, \dots, 6$$

Note that if Y = k, then, necessarily $X \ge k$. Alternatively, for all $\ell < k$ we have $\{X \le \ell\} \subset \{Y < k\} \subset \{Y \ne k\}$ so that $\{X < \ell\} \cap \{Y = k\} = \varnothing$ for $\ell \le k - 1$, and hence

$$\mathbb{P}(Y = k | X = n) = 0 \qquad \text{for } n < k$$

We have, if $1 \le k \le 6$:

$$\mathbb{P}(Y=k) = \sum_{n=1}^{6} \mathbb{P}(Y=k|X=n)\mathbb{P}(X=n) = \sum_{n=k}^{6} \mathbb{P}(Y=k|X=n)\mathbb{P}(X=n)$$
$$= \sum_{n=k}^{6} \binom{n}{k} (1/2)^n (1/6) = (1/6) \sum_{n=k}^{6} \binom{n}{k} (1/2)^n$$

For k = 0 we have

[1] 1.75

$$\mathbb{P}(Y=0) = \sum_{n=1}^{6} \mathbb{P}(Y=0|X=n)\mathbb{P}(X=n) = \sum_{n=1}^{6} (1/2)^{n} (1/6) = (1/6)(1-(1/2)^{6})$$

Using the computer we get, for k = 0:

To calculate $\mathbb{E}[X|Y=0]$ we calculate $\mathbb{P}(X=k|Y=0)$ for $k=1,\ldots,6$:

$$\mathbb{P}(X = k | Y = 0) = \mathbb{P}(Y = 0 | X = k) \mathbb{P}(X = k) / \mathbb{P}(Y = 0)$$
$$= (1/2)^k (1/6) / \left[(1/6)(1 - (1/2)^6 \right] = (1/2)^k / \left[1 - (1/2)^6 \right]$$

Recall that $1-(1/2)^6=\sum_{j=1}^6(1/2)^j$ and using the computer we get

Problem 8 [10 points]

Let X be a discrete random variable with $f_X(-1)=f_X(1)=1/4$ and $f_X(0)=1/2$. Let $Y=X^2$. Show that cov(X,Y)=0 but X and Y are not independent.

Solution:

We have $cov(X,Y)=\mathbb{E}[XY]-\mathbb{E}[X]\mathbb{E}[Y]=\mathbb{E}[XX^2]-\mathbb{E}[X]\mathbb{E}[X^2]=\mathbb{E}[X^3]$ (because $\mathbb{E}[X]=0$). Also $\mathbb{E}[X^3]=(-1)^3\times \mathbb{P}(X=-1)+0\times \mathbb{P}(X=0)+1^3\times \mathbb{P}(X=1)=-f_X(-1)+f_X(1)=0$, thus $cov(X,Y)=\mathbb{E}[XY]-\mathbb{E}[X]\mathbb{E}[Y]=\mathbb{E}[XX^2]-\mathbb{E}[X]\mathbb{E}[X^2]=\mathbb{E}[X^3]=0$.

Since $Y = X^2$, then $\mathbb{P}(X = 1, Y = 1) = \mathbb{P}(X = 1) = 1/4$ (because $\{X = 1\} \subseteq \{Y = 1\}$). And also $\mathbb{P}(Y = 1) = \mathbb{P}(\{X = -1\} \cup \{X = 1\}) = 1/4 + 1/4 = 1/2$. Thus $\mathbb{P}(X = 1, Y = 1) = 1/4$ and $\mathbb{P}(X = 1)\mathbb{P}(Y = 1) = (1/4)(1/2) = 1/8$, thus X and Y are not independent.

Problem 9 [10 points]

Consider a discrete random vector (X_1, X_2) with point mass probability function given by

		X_2			
		0	1	2	
	-1	1/6	0	1/6	
X_1	0	0	a	a	
	1	1/6	1/6	0	

for some $a \in [0,1]$. Note that $\mathcal{R}_{X_1} = \{-1,0,1\}$ and $\mathcal{R}_{X_2} = \{0,1,2\}$.

- (a) If $V(X_2) = 2/3$, compute $V(X_1 2X_2)$.
- (b) Compute $E(X_1|X_2)$.

Solution:

We can find the value of a using that the PMF should satisfy: $\sum_{k_1} \sum_{k_2} f_{(X_1,X_2)}(k_1,k_2) = 1$. Thus 1/6 + 1/6 + 2a + 1/6 + 1/6 = 1, and 2/3 + 2a = 1, and a = 1/6.

For (a) note that $V(X_1-2X_2)=V(X_1)+V(2\,X_2)-2cov(X_1,2\,X_2)=V(X_1)+4\,V(X_2)-4\,cov(X_1,X_2)$. To compute $V(X_1)$ we need the PMF of X_1 which is $f_{X_1}(-1)=\sum_{k_2}f_{(X_1,X_2)}(-1,k_2)=1/6+1/6=1/3$, and similarly for $f_{X_1}(0)=f_{X_1}(1)=1/3$. Then $\mathbb{E}[X_1]=-1(1/3)+0(1/3)+1(1/3)=0$, and $\mathbb{E}[X_1^2]=(-1)^2(1/3)+0^2(1/3)+1^2(1/3)=2/3$, thus $V(X_1)=2/3-0=2/3$. To calculate $cov(X_1,X_2)=\mathbb{E}[X_1X_2]-\mathbb{E}[X_1]\,\mathbb{E}[X_2]=\mathbb{E}[X_1X_2]-0\,\mathbb{E}[X_2]=\mathbb{E}[X_1X_2]$. Simple calculations give $\mathbb{E}[X_1X_2]=(-2)(1/6)+1(1/6)=1/6-1/3=-1/6$. Finally: $V(X_1-2X_2)=V(X_1)+4\,V(X_2)-4\,cov(X_1,X_2)=2/3+4\,(2/3)-4(-1/6)=2/3+8/3+2/3=4$.

For (b) we need to compute $E(X_1|X_2=k_2)$ for different values of $k_2\in\{0,1,2\}$. The conditional PMF of $X_1|X_2=k_2$ satisfies $f_{X_1|X_2=k_2}(k_1)=f_{(X_1,X_2)}(k_1,k_2)/f_{X_2}(k_2)$, so we need to find the marginal PMF of X_2 . We have $f_{X_2}(0)=f_{X_2}(1)=f_{X_2}(2)=1/3$.

When $X_2=0$ we have $f_{X_1|X_2=0}(-1)=f_{X_1|X_2=1}(1)=(1/6)/(1/3)=1/2$ and $f_{X_1|X_2=0}(0)=0$. So that $\mathbb{E}[X_1|X_2=0]=(-1)(1/2)+1(1/2)=0$.

When $X_2=1$ we have $f_{X_1|X_2=1}(-1)=0$ and $f_{X_1|X_2=1}(0)=f_{X_1|X_2=1}(1)=(1/6)/(1/3)=1/2$, and $\mathbb{E}[X_1|X_2=1]=(0)(1/2)+1(1/2)=1/2$.

When $X_2=2$ we have $f_{X_1|X_2=2}(1)=0$ and $f_{X_1|X_2=2}(-1)=f_{X_1|X_2=1}(0)=(1/6)/(1/3)=1/2$, and $\mathbb{E}[X_1|X_2=2]=(-1)(1/2)+0(1/2)=-1/2$.

As a sanity check note that $\mathbb{E}[\mathbb{E}[X_1|X_2]] = 0(1/3) + (1/2)(1/3) + (-1/2)(1/3) = 0 = \mathbb{E}[X_1].$

Problem 10 [10 points]

Let X and Y be two random variables, not necessarily independent, such that $X \sim Bi(1,p)$ and $Y \sim Bi(1,q)$, where $p,q \in (0,1)$. Let Z = X + Y and W = X - Y. Show that if p+q=1 then cov(Z,W) = 0, and check whether Z and W are also independent or not.

Note: Such non-independent X and Y can be constructed as follows. Let $X \sim Bi(1,p)$, with p < 1/2, and let Y be a function of X as follows: if X = 1, then Y = 1; if X = 0 then we toss a biased coin with $\mathbb{P}(Heads) = \alpha$, and let Y = 1 if you observe heads, and Y = 0 otherwise. Then Y has a Binomial distribution, and if we choose $\alpha = (1-2p)/(1-p)$, then $\mathbb{P}(X = 1) + \mathbb{P}(Y = 1) = 1$, and X and Y are not independent.

Solution:

We have cov(Z,W) = cov(X+Y,X-Y) = cov(X+Y,X) - cov(X+Y,Y) = cov(X,X) + cov(Y,X) - cov(X,Y) - cov(Y,Y) = V(X) - V(Y). Since $X \sim Bi(1,p)$ and $Y \sim Bi(1,q)$, we have $V(X) = 1 \times p(1-p)$ and $V(Y) = 1 \times q(1-q)$. If p+q=1, then q=1-p and p=1-q, thus V(X) = V(Y) and cov(Z,W) = V(X) - V(Y) = 0.

Z and W may be independent or not. For example, with the construction in the note above, they are not independent. But if p=1/2, and Y=1-X, then Z and W are independent.