Random variables and distributions
Last modified — 04 Feb 2026
Conditional probability is a probability (a function from \(\Omega\) to \([0,1]\) that satisfies the three axioms)
The conditioning event restricts the space of possible events.
This provides additional information.
Under appropriate conditions: \[\begin{aligned} \mathbb{P}(A \ \vert\ B) &= \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}\\ \\ \mathbb{P}(A) &= \mathbb{P}(A\ \vert\ B)\mathbb{P}(B) + \mathbb{P}(A \ \vert\ B^c)\mathbb{P}(B^c)\\ \\ \mathbb{P}(A \ \vert\ B) &= \frac{\mathbb{P}(B \ \vert\ A) \mathbb{P}(A)}{\mathbb{P}(B)}. \end{aligned}\]
If \(A\) and \(B\) are independent, then \(\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)\) and \(\mathbb{P}(A\ \vert\ B) = \mathbb{P}(A)\).
Show the following:
Case 1
If \(\mathbb{P}(\{i\}) = 1/8 \qquad \forall i\), then
\[\begin{aligned} \mathbb{P}\left( A\cap B\right) &= \mathbb{P}\left( \left\{ 4 \right\} \right) = 1/8, \qquad \text{ and } \qquad \mathbb{P}\left( A\right) \mathbb{P}\left( B\right) = 4/ 8 \times 2/8 = 1/8. \end{aligned}\]
Case 2
If \(\mathbb{P}( \{ i \}) = i / 36 \qquad 1 \le i \le 8\), then
\[\begin{aligned} \mathbb{P}\left( A\cap B\right) &= \mathbb{P}\left( \left\{ 4\right\} \right) =4/36, \qquad \text{ and } \qquad \mathbb{P}\left( A\right) \, \mathbb{P}\left( B\right) = 10 / 36 \times 12/36. \end{aligned}\]
For example, if \(n=3,\) then, \(A_1\), \(A_2\), and \(A_3\) are independent if and only if all of the following hold:
\[\begin{aligned} \mathbb{P}\left( A_{1}\cap A_{2}\right) &= \mathbb{P}\left( A_{1}\right) \, \mathbb{P}\left( A_{2}\right), \\ \mathbb{P}\left( A_{1}\cap A_{3}\right) &= \mathbb{P}\left( A_{1}\right) \, \mathbb{P}\left( A_{3}\right),\\ \mathbb{P}\left( A_{2}\cap A_{3}\right) &= \mathbb{P}\left( A_{2}\right) \, \mathbb{P}\left( A_{3}\right),\\ \mathbb{P}\left( A_{1}\cap A_{2}\cap A_{3}\right) &= \mathbb{P}\left( A_{1}\right) \, \mathbb{P}\left( A_{2}\right) \, \mathbb{P}\left( A_{3}\right). \end{aligned}\]
We flip a fair coin twice. Define three events:
A die is rolled repeatedly until we see a 6.
Let \(Z\) be the event that you eventually stop rolling. Show that \(\mathbb{P}(Z) = 1\).
Therefore, a the random variable called \(X\) is any function
\[X \, : \, \Omega \ \rightarrow {\mathbb{R}}.\]
That is, for each \(\omega \in \Omega\),
\[X( \omega ) \in {\mathbb{R}}.\]
\[\Omega \, = \, \Bigl\{ ( x_{1}, x_{2}, \ldots, x_{5} ) \, : \ x_{i} \in \{ H, T \} \ \Bigr\}\]
\[\text{For example: } \qquad X \bigl( \, \{T, H, T, H, H\} \, \bigr) = X \bigl( \, \{H, T, T, H, H\} \, \bigr)= 3\]
\[\text{For example: } \qquad Y \bigl( \, \{T, H, T, H, H\} \, \bigr) = 2\]
\[\Bigl\{ X > 3 \Bigr\} \, = \, \Bigl\{ \omega \in \Omega \, : \, X \left( \omega \right) > 3 \Bigr\},\]
and
\[\Bigl\{ Y \le 2 \Bigr\} \, = \, \Bigl\{ \omega \in \Omega \, : \, Y \left( \omega \right) \le 2 \Bigr\}.\]
In other words, \(\Bigl\{ X > 3 \Bigr\}\) and \(\Bigl\{ Y \le 2 \Bigr\}\) are events.
The indicator function is a useful mathematical shorthand.
It is also a random variable: it is a function from \(\Omega \to {\mathbb{R}}\).
A probability associates each \(\omega \in \Omega\) with a number between 0 and 1 and satisfies the Probability axioms.
Random variables also operate on \(\Omega\). Taking these together induces a probability on \({\mathbb{R}}\).
Then, considering the RV \(I_H\), we see \(\mathbb{P}(I_H =1) = \mathbb{P}(\{\omega : I_H(\omega) = 1\}) = \mathbb{P}(H)\)
\(\Omega = \{H, T\}\), and \(\mathbb{P}(H) = \mathbb{P}(T) = 0.5\)
This defines \(\mathbb{P}\) on all subsets \(2^\Omega = \{\varnothing, \{T\}, \{H\}, \Omega\}\).
But considering a random variable \(X\), it isn’t really enough to know it’s probability only on it’s range.
We need to know more than that: we need to know, for every \(B \subset {\mathbb{R}}\), what is \(\mathbb{P}(X \in B) = \mathbb{P}(\{s\in\Omega : X(s) \in B\})\).
To fully specify the Distribution, we need to do this for every (nice) subset \(B\). The collection of these subsets is denoted \(\mathcal{B}\).
The mathematical details are at least at the level of Math 420.
Stat 302 - Winter 2025/26