
00 Programming

STAT 406 Daniel J. McDonald

Last modified - 2021-09-19

General advice
When writing R code (or any code), there are some important rules

1. Write script files (which you save) and source them. Don’t do everything in the console.
2. Don’t write anything more than once. This has three corollaries:

a. If you are tempted to copy/paste, don’t.
b. Don’t use magic numbers. Define all constants at the top of the script.
c. Write functions.

3. The third is very important. Functions are easy to test. You give different inputs and check whether
the output is as expected. This helps catch mistakes.

4. There are two kinds of errors: syntax and function.
a. The first R can find (missing close parenthesis, wrong arguments, etc.

b. The second you can only catch by thorough testing (see the HW)
5. Don’t use magic numbers.
6. Use meaningful names. Don’t do this:

data("ChickWeight")
out <-lm(weight ~ Time + Chick + Diet, data = ChickWeight)

7. Comment things that aren’t clear from the (meaningful) names
8. Comment long formulas that don’t immediately make sense:

garbage = with(ChickWeight,
by(weight, Chick,

function(x) (xˆ2 + 23) / length(x)
)

) ## WTF???

Simple stuff
• Vectors:

x <- c(1, 3, 4)
x

[1] 1 3 4
x[1]

[1] 1
x[-1]

[1] 3 4

1

• Matrices:
x <- matrix(1:25, 5, 5)
x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25
x[1,]

[1] 1 6 11 16 21
x[,-1]

[,1] [,2] [,3] [,4]
[1,] 6 11 16 21
[2,] 7 12 17 22
[3,] 8 13 18 23
[4,] 9 14 19 24
[5,] 10 15 20 25
x[c(1,3), 2:3]

[,1] [,2]
[1,] 6 11
[2,] 8 13

Functions
Write lots of functions. I can’t emphasize this enough.
f <- function(arg1, arg2, arg3=12, ...){
stuff <- arg1*arg3
stuff2 <- stuff + arg2
plot(arg1, stuff2, ...)
return(stuff2)

}
x <- rnorm(100)
y1 <- f(x, 3, 15, col=2, pch=19)

2

−2 −1 0 1 2

−
30

−
10

0
10

20
30

arg1

st
uf

f2

f(x, 3)

−2 −1 0 1 2

−
20

−
10

0
10

20
30

arg1

st
uf

f2

[1] 10.71208132 2.22941803 9.44295078 13.05073588 11.11064615
[6] -1.25246171 15.26356015 2.01760606 2.01182887 1.68283337
[11] -20.94673539 -5.08135743 8.50038217 -7.59957782 -5.39636330
[16] 13.52531656 -10.27707502 7.07914749 20.58977470 -0.97099630
[21] -5.13934917 0.26440944 -12.87997195 -8.60207899 -0.96363040
[26] -1.56036318 8.65849621 0.70898159 9.28328325 13.05031265
[31] 0.39576712 -4.15762751 -9.45836238 25.79867918 5.55800905
[36] -4.66357908 13.90603577 -3.37672808 -6.32583264 11.19349119
[41] -1.46287845 14.60427076 1.38550688 -8.74278481 -6.63695725

3

[46] 6.60212772 20.59549168 0.85449871 -14.72219828 -21.39832759
[51] 7.73875129 -3.44279812 13.00730822 12.89305733 -0.80006982
[56] -10.42099204 0.86899886 11.41999773 10.69407115 -8.74213987
[61] 18.94039763 3.27611272 -6.33214008 29.68576943 6.72550056
[66] 6.95461681 14.47238247 0.06772114 16.48131177 -9.52881657
[71] -4.68592894 11.76033209 17.15652991 -10.55936775 15.69675130
[76] 17.98063712 9.57343322 -7.91773765 -7.29885909 1.86444039
[81] 0.64614087 6.60300931 8.77161263 -7.61107150 -18.13642416
[86] -14.99724479 2.85084087 15.90430650 -1.27528955 13.24650889
[91] -8.47394651 8.74048336 13.20049825 -0.19821541 7.87905547
[96] 5.38321808 3.94856657 -3.77393745 2.53124926 17.32569980

Outputs vs. Side effects
• Side effects are things a function does, outputs can be assigned to variables
• A good example is the hist function
• You have probably only seen the side effect which is to plot the histogram

myHistogram <- hist(rnorm(1000))

Histogram of rnorm(1000)

rnorm(1000)

F
re

qu
en

cy

−4 −2 0 2 4

0
50

10
0

15
0

The output

myHistogram

$breaks
[1] -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
[16] 3.0 3.5 4.0
##
$counts
[1] 1 0 0 6 19 45 100 142 183 186 156 90 48 17 5 1 1

4

##
$density
[1] 0.002 0.000 0.000 0.012 0.038 0.090 0.200 0.284 0.366 0.372 0.312 0.180
[13] 0.096 0.034 0.010 0.002 0.002
##
$mids
[1] -4.25 -3.75 -3.25 -2.75 -2.25 -1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25
[13] 1.75 2.25 2.75 3.25 3.75
##
$xname
[1] "rnorm(1000)"
##
$equidist
[1] TRUE
##
attr(,"class")
[1] "histogram"

Assignment
What’s up with <- and =?

• These two work mostly the same but not always.
• The code <- means to assign the stuff on the right to the name on the left:

x <- 12
x; rm(x) # removing it so I can demonstrate

[1] 12

This gives x the value 12.

• Technically, this is the same as
assign('x', 12)
x; rm(x)

[1] 12

Versatility
• In that simple case = does the same thing. However, <- is more versatile. Consider:

median(x = 1:10)

[1] 5.5
x

Error in eval(expr, envir, enclos): object 'x' not found
median(x <- 1:10)

[1] 5.5
x

[1] 1 2 3 4 5 6 7 8 9 10

General practice
• Many style guides say to always use <-.

5

• If you use <-, you should put a space on both sides. This avoids issues like
x< -3

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

when you meant
x <- 3

• One reason to avoid = is due to confusion with logical operators like “Does x=1?”
x=1
x==1

[1] TRUE

Flow control

x = 1
y = c(2,3,4,1,-1,0)
bad if(x=1) print(x)
if (x == 1) print(x)

[1] 1
y > x

[1] TRUE TRUE TRUE FALSE FALSE FALSE
any(y > x)

[1] TRUE
! x

[1] FALSE
all(y > x)

[1] FALSE
while(x < 4){
print(x)
x = x + 1

}

[1] 1
[1] 2
[1] 3
for (i in 1:4) print(x + i)

[1] 5
[1] 6
[1] 7
[1] 8
ifelse(any(y > x), 'yes', 'no')

[1] "no"

6

Some functions

qpareto1 <- function(p, exponent, threshold) {
gives the inverse cdf (quantile) of a Pareto distribution
takes 3 parameters, exponent and threshold are for the distribution
p is the probability you want
See https://en.wikipedia.org/wiki/Pareto_distribution
threshold * ((1 - p) ˆ (-1 / (exponent - 1))) # returns the last object

}

qpareto3 <- function(p, exponent, threshold, lower.tail=TRUE) {
add a *default* argument to decide whether we want the lower/upper tail
if (!lower.tail) p <- 1 - p
q <- qpareto1(p, exponent, threshold)
return(q) # explicitly say waht to return, this line is not required

}

qpareto1(.4, 2, 2)

[1] 3.333333
qpareto3(.4, 2, 2)

[1] 3.333333
qpareto3(.4, 2, 2, FALSE)

[1] 5
qpareto3(.6, 2, 2)

[1] 5

Traceback

qpareto4 <- function(p, exponent, threshold, lower.tail = TRUE) {
just like qpareto 3, but now we check that our inputs make sense
stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
q <- qpareto3(p, exponent, threshold, lower.tail)
return(q)

}
rpareto <- function(n, exponent, threshold) {

generates random numbers
Uses the "inverse cdf" method
https://en.wikipedia.org/wiki/Inverse_transform_sampling
x <- vector(length = n)
for (i in 1:n)
x[i] <- qpareto4(rnorm(1), exponent, threshold) # there's an error here

x
}

rpareto(10, 3, 1)

Error in qpareto4(rnorm(1), exponent, threshold): p >= 0 is not TRUE

• Try traceback in RStudio

7

Vectorizing

rpareto <- function(n, exponent, threshold) {
x <- double(n) # always preallocate space to fill in a loop
for (i in 1:n)
x[i] <- qpareto4(p=runif(1), exponent, threshold) # this one is correct

x
}
rpareto_better <- function(n, exponent, threshold) {

qpareto4(runif(n), exponent, threshold)
we don't need to loop because these operations operate on the vector

}
system.time(rpareto(1e6, 2, 1))

user system elapsed
4.433 0.105 4.541
system.time(rpareto_better(1e6, 2, 1))

user system elapsed
0.022 0.002 0.023

When might loops bad?
• The short answer is that R is not a compiled language.
• This means that whenever you write a loop, R has to re-read all the code within the loop each iteration
• This is muy slow.
• The only thing slower, is if you don’t preallocate.
• Remember that line x <- vector(length=n)?
• Without that line, x would get built within the loop, starting with length 1, then length 2, etc.
• Preallocation is the most important issue to address when writing loops.

lapply vs. apply vs. sapply
• Many functions are vectorized, but not all.
• Arithmetic functions are

1 + 1

[1] 2
c(1,2,3) + c(4,5,6)

[1] 5 7 9
c(1,2,3) + 1

[1] 2 3 4

• Some strange ones
min(5:1,pi)

[1] 1
pmin(5:1,pi)

[1] 3.141593 3.141593 3.000000 2.000000 1.000000

8

The apply variants
• These try to do things where simple loops would suffice.
• apply is for matrices (or arrays). If you want to apply a function along a dimension

(mat <- matrix(1:100,10)) # the parenthesis makes the result print

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 11 21 31 41 51 61 71 81 91
[2,] 2 12 22 32 42 52 62 72 82 92
[3,] 3 13 23 33 43 53 63 73 83 93
[4,] 4 14 24 34 44 54 64 74 84 94
[5,] 5 15 25 35 45 55 65 75 85 95
[6,] 6 16 26 36 46 56 66 76 86 96
[7,] 7 17 27 37 47 57 67 77 87 97
[8,] 8 18 28 38 48 58 68 78 88 98
[9,] 9 19 29 39 49 59 69 79 89 99
[10,] 10 20 30 40 50 60 70 80 90 100
sum(mat)

[1] 5050
apply(mat,2,sum) # "applies" the function "sum" to each column (2nd dimension)

[1] 55 155 255 355 455 555 655 755 855 955
for(i in seq_len(ncol(mat))) sum(mat[,i]) # same in a loop

lapply and sapply
• These work for lists

(z <- list(a = 1:5, b = matrix(rnorm(10), 2), c = 25))

$a
[1] 1 2 3 4 5
##
$b
[,1] [,2] [,3] [,4] [,5]
[1,] -0.47967746 -1.7627927 -0.7448530 0.630098346 -0.04636297
[2,] 0.04769127 0.1477334 -0.4167264 -0.003843378 1.39869655
##
$c
[1] 25
lapply(z, sum)

$a
[1] 15
##
$b
[1] -1.230036
##
$c
[1] 25
sapply(z, sum)

9

a b c
15.000000 -1.230036 25.000000

lapply craziness
What does this do?
sapply(lapply(1:10, rnorm), mean)

[1] 1.46547614 0.09959410 0.65481185 0.54377228 -0.03977113 -0.40519633
[7] 0.35780540 0.06884327 -0.24332721 -0.17741595

Linear models
Predict and Friends

• R has lots of functions for working with different sorts of predictive models.

• We should review how they work with lm, and how they generalize to other sorts of models.

• We’ll use the Mobility data we saw earlier:
mob <- readRDS("../data/mobility.RDS")

Estimation Functions and Formulas
• To estimate a linear model in R: you use lm.

mob.lm1 <- lm(mob$Mobility ~ mob$Population +
mob$Seg_racial + mob$Commute + mob$Income + mob$Gini)

• What lm returns is a complex object containing the estimated coefficients, the fitted values, a lot of
diagnostic statistics, and a lot of information about exactly what work R did to do the estimation. We
will come back to some of this later.

• The thing to focus on for now is the argument to lm in the line of code above, which tells the function
exactly what model to estimate

• it specifies the model. The R jargon term for that sort of specification is that it is the formula of the
model.

The data argument
• While the line of code above works, it’s not very elegant, because we have to keep typing mob$ over and

over.

• More abstractly, it runs specifying which variables we want to use (and how we want to use them)
together with telling R where to look up the variables. This gets annoying if we want to, say, compare
estimates of the same model on two different data sets (in this example, perhaps from different years).

• The solution is to separate the formula from the data source:
mob.lm2 <- lm(Mobility ~ Population + Seg_racial + Commute + Income + Gini, data=mob)

• The data argument tells lm to look up variable names appearing in the formula (the first argument) in
a dataframe called mob.

• It therefore works even if there aren’t variables in our workspace called Mobility, Population, etc.,
those just have to be column names in mob.

10

• In addition to being easier to write, read and re-use than our first effort, this format works better when
we use the model for prediction, as explained below.

Transformations

mob.lm3 <- lm(
Mobility ~ log(Population) + Seg_racial + Commute + Income + Gini,
data = mob

)

• Formulas are so important that R knows about them as a special data type.

• They look like ordinary strings, but they act differently, so there are special functions for converting
strings (or potentially other things) to formulas, and for manipulating them.

• For instance, if we want to keep around the formula with log-transformed population, we can do as
follows:

form.logpop <- "Mobility ~ log(Population) + Seg_racial + Commute + Income + Gini"
form.logpop <- as.formula(form.logpop)
mob.lm4 <- lm(form.logpop, data = mob)

Why formulas?
• Being able to turn strings into formulas is very convenient if we want to try out a bunch of different

model specifications, because R has lots of tools for building strings according to regular patterns, and
then we can turn all those into formulas.

• If we have already estimated a model and want the formula it used as the specification, we can extract
that with the formula function:

formula(mob.lm3)

Mobility ~ log(Population) + Seg_racial + Commute + Income +
Gini
formula(mob.lm3) == form.logpop

[1] TRUE

Extracting Coefficients, Confidence Intervals, Fitted Values, Residuals, etc.
If we want the coefficients of a model we’ve estimated, we can get that with the coefficients function:
coefficients(mob.lm3)

(Intercept) log(Population) Seg_racial Commute Income
8.338558e-02 -2.894236e-03 -5.656590e-02 1.450771e-01 1.772105e-06
Gini
-1.621921e-01
mob.lm3$coefficients

(Intercept) log(Population) Seg_racial Commute Income
8.338558e-02 -2.894236e-03 -5.656590e-02 1.450771e-01 1.772105e-06
Gini
-1.621921e-01

11

Or even

summary(mob.lm3)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.338558e-02 2.870373e-02 2.905044 3.784114e-03
log(Population) -2.894236e-03 1.874746e-03 -1.543802 1.230739e-01
Seg_racial -5.656590e-02 1.713493e-02 -3.301203 1.009994e-03
Commute 1.450771e-01 1.934259e-02 7.500397 1.869467e-13
Income 1.772105e-06 2.878660e-07 6.156006 1.236337e-09
Gini -1.621921e-01 2.225561e-02 -7.287695 8.277813e-13

Confidence Intervals
• If we want confidence intervals for the coefficients, we can use confint:

confint(mob.lm3, level = 0.90) # default confidence level is 0.95

5 % 95 %
(Intercept) 0.036111577 1.306596e-01
log(Population) -0.005981875 1.934023e-04
Seg_racial -0.084786513 -2.834528e-02
Commute 0.113220542 1.769336e-01
Income 0.000001298 2.246209e-06
Gini -0.198846318 -1.255379e-01

Warning!!
• This calculates confidence intervals assuming independent, constant-variance Gaussian noise everywhere,

etc., etc., so it’s not to be taken too seriously unless you’ve checked those assumptions somehow;

Fitted values and residuals
For every data point in the original data set, we have both a fitted value (ŷ) and a residual (y − ŷ). These
are vectors, and can be extracted with the fitted and residuals functions:
head(fitted(mob.lm2)) # head() gives the first few elements

1 2 3 4 5 6
0.07048490 0.06299687 0.06926223 0.04927934 0.05791660 0.06455628
tail(residuals(mob.lm2)) # tail() gives the last few elements

736 737 738 739 740 741
-0.045252255 -0.031707484 0.004026805 0.015472295 -0.025058476 0.007091485

Using bits of the lm output
• You may be more used to accessing all these things as parts of the estimated model — writing something

like mob.lm2$coefficients to get the coefficients.

• This is fine as far as it goes, but we will work with many different sorts of statistical models in this
course, and those internal names can change from model to model.

• If the people implementing the models did their job, however, functions like fitted, residuals,
coefficients and confint will all, to the extent they apply, work, and work in the same way.

12

names(mob.lm2)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "na.action" "xlevels" "call" "terms"
[13] "model"

Methods and Classes (R-Geeky But Important)
• In R things like residuals or coefficients are a special kind of function, called methods. (in

python, these are like obj.residuals. The dot after the object accesses methods defined for that type
of object.)

• Other methods, which you’ve used a lot without perhaps realizing it, are plot, print and summary.

• These are a sort of generic or meta-function, which looks up the class of model being used, and then
calls a specialized function which how to work with that class.

• The convention is that the specialized function is named method.class, e.g., summary.lm.

• If no specialized function is defined, R will try to use method.default.

Wherefore methods?
• The advantage of methods is that you, as a user, don’t have to learn a totally new syntax to get the

coefficients or residuals of every new model class

• you just use residuals(mdl) whether mdl comes from a linear regression which could have been done
two centuries ago, or is a Batrachian Emphasis Machine which won’t be invented for another five years.

• (It also means that core parts of R don’t have to be re-written every time someone comes up with a
new model class.)

• The one draw-back is that the help pages for the generic methods tend to be pretty vague, and you
may have to look at the help for the class-specific functions

• Compare ?summary with ?summary.lm.

(If you are not sure what the class of your model, mdl, is called, use class(mdl).)

Making Predictions
• The point of a regression model is to do prediction, and the method for doing so is, naturally enough,

called predict. It works like so:
predict(object, newdata)

• Here object is an already estimated model, and newdata is a data frame containing the new cases,
real or imaginary, for which we want to make predictions.

• The output is (generally) a vector, with a predicted value for each row of newdata.

• If the rows of newdata have names, those will be carried along as names in the output vector.
predict(mob.lm2, newdata = mob[which(mob$State == "AL"),])

89 90 91 136 140 147 151
0.06302814 0.05804528 0.06325527 0.07346574 0.04584468 0.06507174 0.06884769
152 153 154 156 157 158 159
0.01799403 0.03773926 0.05232423 0.03188207 0.06476723 0.03254932 0.06408194

13

library(tidyverse)
predict(mob.lm2, newdata = filter(mob, State == "AL"))

1 2 3 4 5 6 7
0.06302814 0.05804528 0.06325527 0.07346574 0.04584468 0.06507174 0.06884769
8 9 10 11 12 13 14
0.01799403 0.03773926 0.05232423 0.03188207 0.06476723 0.03254932 0.06408194

Remember
• It is important to remember that making a prediction does not mean “changing the data and re-

estimating the model”;

• It means taking the unchanged estimate of the model, and putting in new values for the covariates or
independent variables.

• (In terms of the linear model, we change x, not β̂.)

• Notice that I used mob.lm2 here, rather than the mathematically-equivalent mob.lm1.

• Because I specified mob.lm2 with a formula that just referred to column names, predict looks up
columns with those names in newdata, puts them into the function estimated in mob.lm2, and calculates
the predictions.

• Had I tried to use mob.lm1, it would have completely ignored newdata.

• This is one crucial reason why it is best to use clean formulas and a data argument when estimating
the model.

Transformations
• If the formula specifies transformations, those will also be done on newdata;

• we don’t have to do the transformations ourselves:
predict(mob.lm3, newdata = filter(mob, State=="AL"))

1 2 3 4 5 6 7
0.06907028 0.06256967 0.06773328 0.07560851 0.05136922 0.06848649 0.07059916
8 9 10 11 12 13 14
0.02782420 0.04427768 0.05771762 0.03861002 0.06773935 0.04120510 0.06764966

• The newdata does not have to be a subset of the original data used for estimation, or related to it in
any way at all

Fun with predict
• It just has to have columns whose names match those in the right-hand side of the formula.

predict(
mob.lm3,
newdata = data.frame(
Population=1.5e6, Seg_racial=0, Commute=0.5,
Income=3e4, Gini = median(mob$Gini)

)
)

1
0.1033759

14

predict(
mob.lm3,
newdata = data.frame(
Population=1.5e6, Seg_racial=0,
Commute=0.5, Income = quantile(mob$Income, c(0.05,0.5,0.95)),
Gini=quantile(mob$Gini,c(0.05,0.5,0.95))

)
)

5% 50% 95%
0.1122663 0.1075794 0.1024651

Problems w/ predict
• A very common programming error is to run predict and get out a vector whose length equals the

number of rows in the original estimation data

• and which doesn’t change no matter what you do to newdata.

• This is because if newdata is missing, or if R cannot find all the variables it needs in it, the default is
the predictions of the model on the original data.

• An even more annoying form of this error consists of forgetting that the argument is called newdata
and not data:

head(predict(mob.lm3)) # Equivalent to head(fitted(mob.lm3))

1 2 3 4 5 6
0.06707724 0.06499898 0.06773945 0.05266410 0.06632751 0.07133333

More problems

head(predict(
mob.lm3,
data=data.frame(Population=1.5e6, Seg_racial=0,

Commute=0.5, Income=3e4, Gini=median(mob$Gini))
)

)

1 2 3 4 5 6
0.06707724 0.06499898 0.06773945 0.05266410 0.06632751 0.07133333
Don't do this!

• Returning the original fitted values when newdata is missing or messed up is not what I would have
chosen, but nobody asked me.

• Because predict is a method, the generic help file is fairly vague, and many options are only discussed
on the help pages for the class-specific functions

• compare ?predict with ?predict.lm.

• Common options include giving standard errors for predictions (as well point forecasts), and giving
various sorts of intervals.

Using Different Model Classes
• All of this carries over to different model classes, at least if they’ve been well-designed.

15

• For instance, suppose we want to estimate a kernel regression on the same data, using the same variables.
library(np)
mob.npbw <- npregbw(formula=formula(mob.lm2), data=mob, tol=1e-2, ftol=1e-2)
mob.np <- npreg(mob.npbw, data=mob)

(no need to know what all these arguments mean at the moment.)

Why this is easy
• We can re-use the formula, because it’s just saying what the input and target variables of the regression

are, and we want that to stay the same.

• More importantly, both lm and npreg use the same mechanism, of separating the formula specifying
the model from the data set containing the actual values of the variables.

• Of course, some models have variations in allowable formulas

– interactions make sense for lm but not for npreg,
– the latter has a special way of dealing with ordered categorical variables that lm doesn’t
– etc.

• After estimating the model, we can do most of the same things to it that we could do to a linear model.

We can look at a summary:

summary(mob.np)

##
Regression Data: 729 training points, in 5 variable(s)
##
No. Complete Observations: 729
No. Incomplete (NA) Observations: 12
Observations omitted or excluded: 374 376 386 410 440 459 485 542 613 616 637 652
Population Seg_racial Commute Income Gini
Bandwidth(s): 1649603 0.1624437 0.03871639 2382.342 0.0318117
##
Kernel Regression Estimator: Local-Constant
Bandwidth Type: Fixed
Residual standard error: 0.0302321
R-squared: 0.6733646
##
Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 5

We can look at fitted values and residuals:

head(fitted(mob.np))

[1] 0.06430449 0.06742469 0.07513909 0.05630422 0.06187851 0.06751230
tail(residuals(mob.np))

736 737 738 739 740
-4.472859e-02 -3.445805e-02 -6.568906e-08 2.774485e-02 -7.634712e-03
741
1.801038e-02

16

We can make predictions:

predict(mob.np, newdata=data.frame(Population=1.5e6, Seg_racial=0,
Commute=0.5, Income=3e4, Gini=median(mob$Gini)))

[1] 0.09849096

and we can plot things

par(mar=c(5,5,1,1),cex.lab=3,cex.axis=2,lwd=2,col=4,bty='n')
plot(mob.np,plot.errors.method='bootstrap')

17

0.0e+00 1.0e+07

0.
00

0.
10

Population

 M
ob

ili
ty

0.0 0.2 0.4

0.
00

0.
10

Seg_racial

 M
ob

ili
ty

0.2 0.4 0.6 0.8

0.
00

0.
10

Commute

 M
ob

ili
ty

20000 40000 60000

0.
00

0.
10

Income

 M
ob

ili
ty

0.3 0.5 0.7

0.
00

0.
10

Gini

 M
ob

ili
ty

18

	General advice
	Simple stuff
	Functions
	Outputs vs. Side effects
	The output
	Assignment
	Versatility
	General practice
	Flow control
	Some functions
	Traceback
	Vectorizing
	When might loops bad?
	lapply vs. apply vs. sapply
	The apply variants
	lapply and sapply
	lapply craziness
	Linear models
	Predict and Friends
	Estimation Functions and Formulas
	The data argument
	Transformations
	Why formulas?
	Extracting Coefficients, Confidence Intervals, Fitted Values, Residuals, etc.
	Or even
	Confidence Intervals
	Warning!!
	Fitted values and residuals
	Using bits of the lm output
	Methods and Classes (R-Geeky But Important)
	Wherefore methods?
	Making Predictions
	Remember
	Transformations
	Fun with predict
	Problems w/ predict
	More problems
	Using Different Model Classes
	Why this is easy
	We can look at a summary:
	We can look at fitted values and residuals:
	We can make predictions:
	and we can plot things

