
Using R Markdown for Class Reports

DJM

16 January 2020

library(knitr)

Mark Up, Markdown
• You are probably used to word processing programs, like Microsoft Word, which employ the “what you

see is what you get” (WYSIWYG) principle:

– you want italics, and, lo, they’re in italics
– you want some to be in a bigger, different font and you just select the font, and so on.

• This works well enough for n00bs but is not a viable basis for a system of text formatting

• because it depends on a particular program (a) knowing what you mean and (b) implementing it well.

• The essential idea in a mark-up language is that it consists of ordinary text, plus signs which indicate
how to change the formatting or meaning of the text.

• Some mark-up languages, like HTML (Hyper-Text Markup Language) use very obtrusive markup;
others, like the language called Markdown, are more subtle.

Example
For instance, the last few sentences in Markdown look like this:

* The essential idea in a
__mark-up language__ is that it consists of ordinary text, _plus_ signs which
indicate how to change the formatting or meaning of the text.

* Some mark-up
languages, like HTML (Hyper-Text Markup Language) use very obtrusive markup;
others, like the language called __Markdown__, are more subtle.

Rendering
• Every mark-up language needs to be rendered somehow into a format which actually includes the

fancy formatting, images, mathematics, computer code, etc., etc., specified by the mark-up.

• For HTML, the rendering program is called a “web browswer”.

• Most computers which know how to work with Markdown at all know how to render it as

– HTML (which you can then view in a browser),
– PDF (which you can then view in Acrobat or the like),
– Word (which you can then view in the abomination of Redmond).

1

Advantages
• portability across machines
• no proprietary software (I’m looking at you Bill)
• stability

R Markdown is, in particular, both “free as in beer” (you will never pay a dollar for software to use it) and
“free as in speech” (the specification is completely open to all to inspect).

Even if you are completely OK with making obeisance to the Abomination of Redmond every time you
want to read your own words, the sheer stability of mark-up languages makes them superior for scientific
documents.

Rendering and Editing
To write R Markdown, you will need a text editor, a program which lets you read and write plain text files.
You will also need R, and the package rmarkdown (and all the packages it depends on).

• Most computers come with a text editor (TextEdit on the Mac, Notepad on Windows machines, etc.).
• There are also lots of higher-powered text editors; I use Emacs, but I admit it has a harsh learning

curve.
• You could use Word (or some other WYSIWYG word processor), taking care to always save your

document in plain text format. I do not recommend this.
• R Studio comes with a built-in text editor, which knows about, and has lots of tools for, working with

R Markdown documents.

If this is your first time using a text editor for something serious, I recommend using R Studio. (That’s what
I’m using to write this.)

Rendering in R Studio
Assuming you have the document you’re working on open in the text editor, click the button that says “knit”.

Basic Formatting in R Markdown
For the most part, text is just text. One advantage of R Markdown is that the vast majority of your document
will be stuff you just type as you ordinarily would.

Paragraph Breaks and Forced Line Breaks

To insert a break between paragraphs, include a single completely blank line.

To force a line break, put two
blank spaces at the end of a line.

Headers
• The character # at the beginning of a line means that the rest of the line is interpreted as a section

header.

• The number of #s at the beginning of the line indicates whether it is treated as a section, sub-section,
sub-sub-section, etc. of the document.

Italics, Boldface
• Text to be italicized goes inside a single set of underscores or asterisks.

• Text to be boldfaced goes inside a double set of underscores or asterisks.

2

http://www.gnu.org/software/emacs/emacs.html
http://www.rstudio.com

Quotations

Set-off quoted paragraphs are indicated by an initial >:

In fact, all epistemological value of the theory of probability is based on this: that large-scale
random phenomena in their collective action create strict, nonrandom regularity. [Gnedenko and
Kolmogorov, Limit Distributions for Sums of Independent Random Variables, p. 1]

Bullet Lists
• This is a list marked where items are marked with bullet points.
• Each item in the list should start with a * (asterisk) character.
• Each item should also be on a new line.

– Indent lines and begin them with + or - for sub-bullets.
– Sub-sub-bullet aren’t really a thing in R Markdown.

Numbered lists

1. Lines which begin with a numeral (0–9), followed by a period, will usually be interpreted as items in a
numbered list.

2. R Markdown handles the numbering in what it renders automatically.
3. This can be handy when you lose count or don’t update the numbers yourself when editing. (Look

carefully at the .Rmd file for this item.)
a. Sub-lists of numbered lists, with letters for sub-items, are a thing.
b. They are however a fragile thing, which you’d better not push too hard.

Title, Author, Date, Output Format
You can specify things like title, author and date in the header of your R Markdown file. This goes at the
very beginning of the file, preceded and followed by lines containing three dashes. Thus the beginning of this
file looks like so:

title: Using R Markdown for Class Reports
author: DJM
date: "19 September, 2021"

You can also use the header to tell R Markdown whether you want it to render to HTML (the default), PDF,
or something else. To have this turned into PDF, for instance, I’d write

title: Using R Markdown for Class Reports
author: DJM
date: "19 September, 2021"
output: pdf_document

• This header information is called YAML if you need the Google.

Hyperlinks
• Hyperlinks anchored by URLs are easy: just type the URL, as, e.g., http://mypage.iu.edu/~dajmcdon/

to get to my website

• Hyperlinks anchored to text have the anchor in square brackets, then the link in parentheses.

• A very useful link is the R markdown cheatsheet.

3

http://www.google.com
http://mypage.iu.edu/~dajmcdon/
https://xkcd.com/1521/
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf

Images
Images begin with an exclamation mark, then the text to use if the image can’t be displayed, then either the
file address of the image (in the same directory as your document) or a URL. The example below is for a url.
include_graphics("41zmob.png")

(If there’s a way of re-sizing images like this in Markdown, I haven’t been able to find it.)

Including Code
Code Chunks and Their Results

A code chunk is simply an off-set piece of code by itself. It is preceded by ```{r} on a line by itself, and
ended by a line which just says ```. The code itself goes in between. Here, for instance, is some code which
loads a data set from a library, and makes a scatter plot.
library(MASS)
data(cats)
plot(Hwt ~ Bwt, data=cats, xlab="Body weight (kg)", ylab="Heart weight (g)")

4

2.0 2.5 3.0 3.5

6
8

10
12

14
16

18
20

Body weight (kg)

H
ea

rt
 w

ei
gh

t (
g)

Inline Code

• This is code not set off on a line by itself, but beginning with r and ending with . Using inline code is
how this document knows that the cats data set contains 144 rows, and that the median weight of the
female cats’ hearts was 9.1 grams.

• Notice that inline code does not display the commands run, just their output.

Seen But Not Heard
• Code chunks (but not inline code) can take a lot of options which modify how they are run, and how

they appear in the document.

• These options go after the initial r and before the closing } that announces the start of a code chunk.
One of the most common options turns off printing out the code, but leaves the results alone: ```{r,
echo=FALSE}

• Another runs the code, but includes neither the text of the code nor its output. ```{r, include=FALSE}

• This might seem pointless, but it can be useful for code chunks which do set-up like loading data files,
or initial model estimates, etc.

• Another option prints the code in the document, but does not run it: ```{r, eval=FALSE} This is
useful if you want to talk about the (nicely formatted) code.

• You can give chunks names immediately after their opening, like ```{r clevername}. This name is
then used for the images (or other files) that are generated when the document is rendered.

Tables
The default print-out of matrices, tables, etc. from R Markdown is frankly ugly. The knitr package contains
a very basic command, kable, which will format an array or data frame more nicely for display.

Compare:

5

coefficients(summary(lm(Hwt ~ Bwt, data=cats)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3566624 0.6922770 -0.5152019 6.072131e-01
Bwt 4.0340627 0.2502615 16.1193908 6.969045e-34

with
library(knitr) # Only need this the first time!
kable(coefficients(summary(lm(Hwt ~ Bwt, data=cats))))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3566624 0.6922770 -0.5152019 0.6072131
Bwt 4.0340627 0.2502615 16.1193908 0.0000000

— Of course, R’s defaults print out a crazy number of decimal places. So use
kable(coefficients(summary(lm(Hwt ~ Bwt, data=cats))),digits=3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.357 0.692 -0.515 0.607
Bwt 4.034 0.250 16.119 0.000

“Caching” Code Chunks (Re-Running Only When Changed)
• By default, R Markdown will re-run all of your code every time you render your document.

• If some of your code is slow, this can add up to a lot of time. You can, however, ask R Markdown to
keep track of whether a chunk of code has changed, and only re-run it if it has.

• This is called caching the chunk.
lm(Hwt ~ Bwt, data=cats)

##
Call:
lm(formula = Hwt ~ Bwt, data = cats)
##
Coefficients:
(Intercept) Bwt
-0.3567 4.0341

Setting Defaults for All Chunks
You can tell R to set some defaults to apply to all chunks where you don’t specifically over-ride them. Here
are the ones I generally use:
Need the knitr package to set chunk options
library(knitr)

Set knitr options for knitting code into the report:
- Don't print out code (echo)
- Save results so that code blocks aren't re-run unless code changes (cache),
or a relevant earlier code block changed (autodep), but don't re-run if the
only thing that changed was the comments (cache.comments)

6

- Don't clutter R output with messages or warnings (message, warning)
This _will_ leave error messages showing up in the knitted report

opts_chunk$set(echo=FALSE,
cache=TRUE, autodep=TRUE, cache.comments=FALSE,
message=FALSE, warning=FALSE)

• This sets some additional options beyond the ones I’ve discussed, like not re-running a chunk if only
the comments have changed (cache.comments = FALSE), and leaving out messages and warnings.

• You can over-ride these defaults by setting options for individual chunks.

Math in R Markdown
Point out the Cheat sheet.

• R Markdown lets you write complex mathematical formulas and derivations, and have them displayed
very nicely.

• Like code, the math can either be inline or set off (displays).

• Inline math is marked off with a pair of dollar signs ($), as $\pi rˆ2$ πr2 or $eˆ{i\pi}$ eiπ.

• Mathematical displays are marked off with \[and \], as in

eiπ = −1

Elements of Math Mode
• Lots of details in the rmarkdownDetails file in the lectures repo.

Putting It All Together: Writing Your Report in R Markdown
• You have installed the rmarkdown package and all its dependencies.
• This is automatic with Rstudio
• You open it up to a new document.

– You give it a title, an author, and a date.
• You use headers to divide it into appropriate, titled sections, and possibly sub-sections.

– One common pattern: “Introduction”, “Data and Research Questions”, “Analysis”, “Results”,
“Conclusion”.

– Another common pattern: “Problem 1”, “Problem 2”, . . . , “Extra Credit”.
• You write text.
• When you need it, you insert math into the text, or even whole mathematical displays.
• When you need it, you insert code into your document.

– The code runs (as needed) when you render the document.
– Figures, tables, and other output are automatically inserted into the document, and track changes

in your code.
• Every so often, try to render your document.

– When you (think you) have finished a section is a good time to do so.
– Another good time is once you’ve made any non-trivial change to the code or the text.

• Either your document rendered successfully or it didn’t.
– If it did, and you like the results, congratulate yourself and cheerfully go on to your next task.
– If it rendered but you don’t like the results, think about why and try to fix it.
– If it didn’t render, R will tell you where it gave up, so try to debug from around there.

7

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf

	Mark Up, Markdown
	Example
	Rendering
	Advantages
	Rendering and Editing
	Rendering in R Studio
	Basic Formatting in R Markdown
	Paragraph Breaks and Forced Line Breaks

	Headers
	Italics, Boldface
	Quotations

	Bullet Lists
	Numbered lists

	Title, Author, Date, Output Format
	Hyperlinks
	Images
	Including Code
	Code Chunks and Their Results
	Inline Code

	Seen But Not Heard
	Tables
	``Caching'' Code Chunks (Re-Running Only When Changed)
	Setting Defaults for All Chunks
	Math in R Markdown
	Elements of Math Mode
	Putting It All Together: Writing Your Report in R Markdown

