Statistics practice solutions

Stat 406, W1 2020
5 October 2020

1. Suppose Y_{1}, \ldots, Y_{n} are iid $\operatorname{Normal}(\mu, 1)$. Write down the likelihood of μ.

$$
L(\mu ; \mathbf{y})=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\left(y_{i}-\mu\right)^{2}}{2}\right)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right)
$$

2. Suppose Y_{1}, \ldots, Y_{n} are independent but not identically distributed $\operatorname{Normal}\left(\mu_{i}, 1\right)$. Write down the likelihood of μ.

$$
L(\boldsymbol{\mu} ; \mathbf{y})=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\left(y_{i}-\mu_{i}\right)^{2}}{2}\right)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right)^{2}\right)
$$

3. Consider problem 1. What is the expected value of Y_{25} ?

$$
E\left[Y_{25}\right]=\mu
$$

4. Consider problem 2. What is the expected value of Y_{25} ?

$$
E\left[Y_{25}\right]=\mu_{25}
$$

5. Suppose \widehat{Z} is an estimator of ϕ. What is the definition of the bias of \widehat{Z} ?

$$
\operatorname{bias}(\widehat{Z})=E[\widehat{Z}-\phi]=E[\widehat{Z}]-\phi
$$

6. Consider problem 1. What is the bias of Y_{25} as an estimator of μ ?

$$
\operatorname{bias}\left(Y_{25}\right)=E\left[Y_{25}-\mu\right]=E\left[Y_{25}\right]-\mu=\mu-\mu=0
$$

7. Consider problem 1. What is the variance of Y_{25} ?

$$
\operatorname{Var}\left[Y_{25}\right]=1
$$

8. Consider problem 1. What is the bias of $\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ as an estimator of μ ?

$$
\operatorname{bias}(\bar{Y})=E[\bar{Y}-\mu]=E[\bar{Y}]-\mu=\frac{1}{n} \sum_{i=1}^{n} E\left[Y_{i}\right]-\mu=\mu-\mu=0
$$

9. Consider problem 1. What is the variance of $\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$?

$$
\operatorname{Var}[\bar{Y}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[Y_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} 1=n / n^{2}=1 / n
$$

10. Consider problem 1. Assume n is even. Is the variance of $\widetilde{Y}_{n}=\frac{1}{n / 2} \sum_{i=1}^{n / 2} Y_{2 i}$ larger or smaller than that of \bar{Y}_{n} ? (Could you find the variance if asked?)

$$
\operatorname{Var}[\tilde{Y}]=\operatorname{Var}\left[\frac{1}{n / 2} \sum_{i=1}^{n / 2} Y_{2 i}\right]=\frac{1}{(n / 2)^{2}} \sum_{i=1}^{n / 2} \operatorname{Var}\left[Y_{2 i}\right]=\frac{1}{(n / 2)^{2}} \sum_{i=1}^{n / 2} 1=(n / 2) /(n / 2)^{2}=2 / n
$$

11. Consider the previous problem. What is the expected value of \tilde{Y}_{n} ?

$$
E\left[\widetilde{Y}_{n}\right]=\frac{1}{n / 2} \sum_{i=1}^{n / 2} E\left[Y_{2 i}\right]=\mu
$$

12. How does the bias of \widetilde{Y}_{n} compare to the bias of \bar{Y}_{n} ? It's the same.
13. What is the MSE of \bar{Y}_{n} as an estimator of μ ? That is

$$
E\left[\left(\bar{Y}_{n}-\mu\right)^{2}\right]=1 / n
$$

14. What is the MSE of \bar{Y}_{n} as an predictor of Y_{n+1} ? That is

$$
E\left[\left(\bar{Y}_{n}-Y_{n+1}\right)^{2}\right]=1 / n+1
$$

15. Suppose Y_{1}, \ldots, Y_{n} are independent Normal with means $x_{i}^{\top} \beta=\sum_{j=1}^{p} x_{i j} \beta_{j}$ and variance σ^{2}.
a. Ignoring the trivial cases $\left(\mathbf{x}_{i}=\mathbf{x}_{j} \forall i \neq j\right.$ or $\left.\beta=0\right)$ are the Y 's identically distributed?

No, they have different means
b. What is $E\left[Y_{25}\right]$?

$$
E\left[Y_{25}\right]=x_{25}^{\top} \beta
$$

c. What is $E\left[\sum_{i=1}^{n} Y_{i}\right]$?

$$
E\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} E\left[Y_{i}\right]=\sum_{i=1}^{n} x_{i}^{\top} \beta=\left(\sum_{i=1}^{n} x_{i}\right)^{\top} \beta
$$

d. Let $\hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$. In this formula, what is random?

Only y is random
e. What is $E[\hat{\beta}]$?

$$
E[\hat{\beta}]=E\left[\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}\right]=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} E[\mathbf{y}]=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \beta=\beta
$$

f. What is $\operatorname{Var}[\hat{\beta}]$?

$$
\begin{aligned}
\operatorname{Var}[\hat{\beta}] & =\operatorname{Var}\left[\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}\right]=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \operatorname{Var}[\mathbf{y}] \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\left(\sigma^{2} \mathbf{I}_{n}\right) \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

