Statistics practice

Stat 406, W1 2020

5 October 2020

- 1. Suppose Y_1, \ldots, Y_n are iid Normal $(\mu, 1)$. Write down the *likelihood* of μ .
- 2. Suppose Y_1, \ldots, Y_n are *independent* but not identically distributed Normal($\mu_i, 1$). Write down the likelihood of μ .
- 3. Consider problem 1. What is the expected value of Y_{25} ?
- 4. Consider problem 2. What is the expected value of Y_{25} ?
- 5. Suppose \widehat{Z} is an estimator of ϕ . What is the definition of the bias of \widehat{Z} ?
- 6. Consider problem 1. What is the bias of Y_{25} as an estimator of μ ?
- 7. Consider problem 1. What is the variance of Y_{25} ?
- 8. Consider problem 1. What is the *bias* of $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$ as an estimator of μ ?
- 9. Consider problem 1. What is the variance of $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$?
- 10. Consider problem 1. Assume n is even. Is the variance of $\widetilde{Y}_n = \frac{1}{n/2} \sum_{i=1}^{n/2} Y_{2i}$ larger or smaller than that of \overline{Y}_n ? (Could you find the variance if asked?)
- 11. Consider the previous problem. What is the expected value of \tilde{Y}_n ?
- 12. How does the bias of \widetilde{Y}_n compare to the bias of \overline{Y}_n ?
- 13. What is the MSE of \overline{Y}_n as an estimator of μ ? That is

$$E\left[(\overline{Y}_n - \mu)^2\right] = ???$$

14. What is the MSE of \overline{Y}_n as an predictor of Y_{n+1} ? That is

$$E\left[(\overline{Y}_n - Y_{n+1})^2\right] = ???$$

- 15. Suppose Y_1, \ldots, Y_n are independent Normal with means $x_i^{\top} \beta = \sum_{j=1}^p x_{ij} \beta_j$ and variance σ^2 .
 - a. Ignoring the trivial cases ($\mathbf{x}_i = \mathbf{x}_j \forall i \neq j$ or $\beta = 0$) are the Y's identically distributed?

 - b. What is $E[Y_{25}]$? c. What is $E[\sum_{i=1}^{n} Y_i]$?
 - d. Let $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$. In this formula, what is random?
 - e. What is $E[\hat{\beta}]$?
 - f. What is $\operatorname{Var}[\hat{\beta}]$?