Statistics practice

Stat 406, W1 2020
5 October 2020

1. Suppose Y_{1}, \ldots, Y_{n} are iid $\operatorname{Normal}(\mu, 1)$. Write down the likelihood of μ.
2. Suppose Y_{1}, \ldots, Y_{n} are independent but not identically distributed $\operatorname{Normal}\left(\mu_{i}, 1\right)$. Write down the likelihood of μ.
3. Consider problem 1. What is the expected value of Y_{25} ?
4. Consider problem 2. What is the expected value of Y_{25} ?
5. Suppose \widehat{Z} is an estimator of ϕ. What is the definition of the bias of \widehat{Z} ?
6. Consider problem 1. What is the bias of Y_{25} as an estimator of μ ?
7. Consider problem 1. What is the variance of Y_{25} ?
8. Consider problem 1. What is the bias of $\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ as an estimator of μ ?
9. Consider problem 1. What is the variance of $\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$?
10. Consider problem 1. Assume n is even. Is the variance of $\widetilde{Y}_{n}=\frac{1}{n / 2} \sum_{i=1}^{n / 2} Y_{2 i}$ larger or smaller than that of \bar{Y}_{n} ? (Could you find the variance if asked?)
11. Consider the previous problem. What is the expected value of \tilde{Y}_{n} ?
12. How does the bias of \widetilde{Y}_{n} compare to the bias of \bar{Y}_{n} ?
13. What is the MSE of \bar{Y}_{n} as an estimator of μ ? That is

$$
E\left[\left(\bar{Y}_{n}-\mu\right)^{2}\right]=? ? ?
$$

14. What is the MSE of \bar{Y}_{n} as an predictor of Y_{n+1} ? That is

$$
E\left[\left(\bar{Y}_{n}-Y_{n+1}\right)^{2}\right]=? ? ?
$$

15. Suppose Y_{1}, \ldots, Y_{n} are independent Normal with means $x_{i}^{\top} \beta=\sum_{j=1}^{p} x_{i j} \beta_{j}$ and variance σ^{2}.
a. Ignoring the trivial cases $\left(\mathbf{x}_{i}=\mathbf{x}_{j} \forall i \neq j\right.$ or $\left.\beta=0\right)$ are the Y 's identically distributed?
b. What is $E\left[Y_{25}\right]$?
c. What is $E\left[\sum_{i=1}^{n} Y_{i}\right]$?
d. Let $\hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$. In this formula, what is random?
e. What is $E[\hat{\beta}]$?
f. What is $\operatorname{Var}[\hat{\beta}]$?
