References
Alfaro, Esteban, Matías Gámez, and Noelia García. 2013. “adabag: An R Package for
Classification with Boosting and Bagging.” Journal of
Statistical Software 54 (2): 1–35. https://doi.org/10.18637/jss.v054.i02.
Alfaro, Esteban; Gamez, Matias, Garcia, Noelia; with contributions from
L. Guo, A. Albano, M. Sciandra, and A. Plaia. 2023. Adabag: Applies
Multiclass AdaBoost.M1, SAMME and Bagging. https://CRAN.R-project.org/package=adabag.
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier
Luraschi, Kevin Ushey, Aron Atkins, et al. 2023. Rmarkdown: Dynamic
Documents for r. https://CRAN.R-project.org/package=rmarkdown.
Ambroise, Christophe, and Geoffrey J. McLachlan. 2002. “Selection
Bias in Gene Extraction on the Basis of Microarray Gene-Expression
Data.” Proceedings of the National Academy of Sciences
99 (10): 6562–66. https://doi.org/10.1073/pnas.102102699.
Arel-Bundock, Vincent. 2023. Countrycode: Convert Country Names and
Country Codes. https://vincentarelbundock.github.io/countrycode/.
Arel-Bundock, Vincent, Nils Enevoldsen, and CJ Yetman. 2018.
“Countrycode: An r Package to Convert Country Names and Country
Codes.” Journal of Open Source Software 3 (28): 848. https://doi.org/10.21105/joss.00848.
Boente, Graciela, Alejandra Martínez, and Matías Salibián-Barrera. 2017.
“Robust Estimators for Additive Models Using Backfitting.”
Journal of Nonparametric Statistics 29 (4): 744–67. https://doi.org/10.1080/10485252.2017.1369077.
Breiman, Leo, Adele Cutler, Andy Liaw, and Matthew Wiener. 2022.
randomForest: Breiman and Cutler’s Random Forests for Classification
and Regression. https://www.stat.berkeley.edu/~breiman/RandomForests/.
Csárdi, Gábor, Kirill Müller, and Jim Hester. 2022. Desc: Manipulate
DESCRIPTION Files. https://CRAN.R-project.org/package=desc.
Dolnicar, Sara, Bettina Gruen, and Friedrich Leisch. 2018. Market
Segmentation Analysis — Understanding It, Doing It, and Making It
Useful. Singapore: Springer. https://doi.org/10.1007/978-981-10-8818-6.
Efron, Bradley. 1986. “How Biased Is the Apparent Error Rate of a
Prediction Rule?” Journal of the American Statistical
Association 81 (394): 461–70.
Fraley, Chris, Adrian E. Raftery, and Luca Scrucca. 2022. Mclust:
Gaussian Mixture Modelling for Model-Based Clustering, Classification,
and Density Estimation. https://mclust-org.github.io/mclust/.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2000.
“Additive logistic regression: a statistical
view of boosting (With discussion and a rejoinder by the
authors).” The Annals of Statistics 28 (2):
337–407. https://doi.org/10.1214/aos/1016218223.
Friedman, Jerome, Trevor Hastie, Rob Tibshirani, Balasubramanian
Narasimhan, Kenneth Tay, Noah Simon, and James Yang. 2023. Glmnet:
Lasso and Elastic-Net Regularized Generalized Linear Models. https://glmnet.stanford.edu.
Friedman, Jerome, Robert Tibshirani, and Trevor Hastie. 2010.
“Regularization Paths for Generalized Linear Models via Coordinate
Descent.” Journal of Statistical Software 33 (1): 1–22.
https://doi.org/10.18637/jss.v033.i01.
Genz, Alan, and Frank Bretz. 2009. Computation of Multivariate
Normal and t Probabilities. Lecture Notes in Statistics.
Heidelberg: Springer-Verlag.
Genz, Alan, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, and Torsten Hothorn.
2023. Mvtnorm: Multivariate Normal and t Distributions. http://mvtnorm.R-forge.R-project.org.
Halvorsen, Kjetil. 2019. ElemStatLearn: Data Sets, Functions and
Examples from the Book: "The Elements of Statistical Learning, Data
Mining, Inference, and Prediction" by Trevor Hastie, Robert Tibshirani
and Jerome Friedman. http://www-stat.stanford.edu/~tibs/ElemStatLearn/.
Hastie, Trevor, and Brad Efron. 2022. Lars: Least Angle Regression,
Lasso and Forward Stagewise. https://doi.org/10.1214/009053604000000067.
James, Gareth, Daniela Witten, Trevor Hastie, and Rob Tibshirani. 2022.
ISLR2: Introduction to Statistical Learning, Second Edition. https://www.statlearning.com.
Kassambara, Alboukadel. 2022. Ggcorrplot: Visualization of a
Correlation Matrix Using Ggplot2. http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2.
Leisch, Friedrich. 2006. “A Toolbox for k-Centroids Cluster
Analysis.” Computational Statistics and Data Analysis 51
(2): 526–44.
———. 2010. “Neighborhood Graphs, Stripes and Shadow Plots for
Cluster Visualization.” Statistics and Computing 20:
457–69. https://doi.org/10.1007/s11222-009-9137-8.
———. 2022. Flexclust: Flexible Cluster Algorithms. https://CRAN.R-project.org/package=flexclust.
Leisch, Friedrich, and Bettina Gruen. 2006. “Extending Standard
Cluster Algorithms to Allow for Group Constraints.” In
Compstat 2006—Proceedings in Computational Statistics, edited
by Alfredo Rizzi and Maurizio Vichi, 885–92. Physica Verlag, Heidelberg,
Germany.
Liaw, Andy, and Matthew Wiener. 2002. “Classification and
Regression by randomForest.” R News 2 (3): 18–22. https://CRAN.R-project.org/doc/Rnews/.
Lumley, Thomas. 2020. Leaps: Regression Subset Selection. https://CRAN.R-project.org/package=leaps.
Maechler, Martin, Peter Rousseeuw, Anja Struyf, and Mia Hubert. 2022.
Cluster: "Finding Groups in Data": Cluster Analysis Extended
Rousseeuw Et Al. https://svn.r-project.org/R-packages/trunk/cluster/.
Müller, Kirill, and Hadley Wickham. 2023. Tibble: Simple Data
Frames. https://CRAN.R-project.org/package=tibble.
Ripley, Brian. 2023a. Class: Functions for Classification. http://www.stats.ox.ac.uk/pub/MASS4/.
———. 2023b. MASS: Support Functions and Datasets for Venables and
Ripley’s MASS. http://www.stats.ox.ac.uk/pub/MASS4/.
———. 2023c. Nnet: Feed-Forward Neural Networks and Multinomial
Log-Linear Models. http://www.stats.ox.ac.uk/pub/MASS4/.
———. 2023d. Tree: Classification and Regression Trees. https://CRAN.R-project.org/package=tree.
Scharl, Theresa, and Friedrich Leisch. 2006. “The Stochastic
QT–Clust Algorithm: Evaluation of Stability and Variance on Time–Course
Microarray Data.” In Compstat 2006—Proceedings in
Computational Statistics, edited by Alfredo Rizzi and Maurizio
Vichi, 1015–22. Physica Verlag, Heidelberg, Germany.
Scrucca, Luca, Michael Fop, T. Brendan Murphy, and Adrian E. Raftery.
2016. “mclust 5: Clustering,
Classification and Density Estimation Using Gaussian Finite
Mixture Models.” The R Journal 8 (1):
289–317. https://doi.org/10.32614/RJ-2016-021.
Sievert, Carson, Joe Cheng, and Garrick Aden-Buie. 2023. Bslib:
Custom Bootstrap ’Sass’ Themes for Shiny and Rmarkdown. https://CRAN.R-project.org/package=bslib.
Simon, Noah, Jerome Friedman, Robert Tibshirani, and Trevor Hastie.
2011. “Regularization Paths for Cox’s Proportional Hazards Model
via Coordinate Descent.” Journal of Statistical Software
39 (5): 1–13. https://doi.org/10.18637/jss.v039.i05.
South, Andy. 2011. “Rworldmap: A New r Package for Mapping Global
Data.” The R Journal 3 (1): 35–43. http://journal.r-project.org/archive/2011-1/RJournal_2011-1_South.pdf.
———. 2016. Rworldmap: Mapping Global Data. https://CRAN.R-project.org/package=rworldmap.
Tay, J. Kenneth, Balasubramanian Narasimhan, and Trevor Hastie. 2023.
“Elastic Net Regularization Paths for All Generalized Linear
Models.” Journal of Statistical Software 106 (1): 1–31.
https://doi.org/10.18637/jss.v106.i01.
Tharmaratnam, Kukatharmini, Gerda Claeskens, Christophe Croux, and
Matias Salibián-Barrera. 2010. “S-Estimation for Penalized
Regression Splines.” Journal of Computational and Graphical
Statistics 19 (3): 609–25. https://doi.org/10.1198/jcgs.2010.08149.
Therneau, Terry, and Beth Atkinson. 2022. Rpart: Recursive
Partitioning and Regression Trees. https://CRAN.R-project.org/package=rpart.
Todorov, Valentin, and Peter Filzmoser. 2009. “An Object-Oriented
Framework for Robust Multivariate Analysis.” Journal of
Statistical Software 32 (3): 1–47. https://www.jstatsoft.org/article/view/v032i03/.
Todorov, Valentin, Andreas Ruckstuhl, Matias Salibian-Barrera, Tobias
Verbeke, Manuel Koller, and Martin Maechler. 2023. Robustbase: Basic
Robust Statistics. https://robustbase.R-forge.R-project.org/.
Venables, W. N., and B. D. Ripley. 2002b. Modern Applied Statistics
with s. Fourth. New York: Springer. https://www.stats.ox.ac.uk/pub/MASS4/.
———. 2002a. Modern Applied Statistics with s. Fourth. New York:
Springer. https://www.stats.ox.ac.uk/pub/MASS4/.
———. 2002c. Modern Applied Statistics with s. Fourth. New York:
Springer. https://www.stats.ox.ac.uk/pub/MASS4/.
Voeten, Erik, Anton Strezhnev, and Michael Bailey. 2009.
“United Nations General Assembly Voting Data.”
Harvard Dataverse. https://doi.org/10.7910/DVN/LEJUQZ.
Wand, Matt. 2018. SemiPar: Semiparametic Regression. http://matt-wand.utsacademics.info/SPmanu.pdf.
———. 2023. KernSmooth: Functions for Kernel Smoothing Supporting
Wand & Jones (1995). https://CRAN.R-project.org/package=KernSmooth.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
———. 2023a. Downlit: Syntax Highlighting and Automatic Linking.
https://CRAN.R-project.org/package=downlit.
———. 2023b. Tidyverse: Easily Install and Load the Tidyverse.
https://CRAN.R-project.org/package=tidyverse.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Wickham, Hadley, Winston Chang, Robert Flight, Kirill Müller, and Jim
Hester. 2021. Sessioninfo: R Session Information. https://CRAN.R-project.org/package=sessioninfo.
Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen,
Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey
Dunnington. 2023. Ggplot2: Create Elegant Data Visualisations Using
the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2.
Wickham, Hadley, and Dana Seidel. 2022. Scales: Scale Functions for
Visualization. https://CRAN.R-project.org/package=scales.
Wood, Simon N. 2017. Generalized Additive Models: An Introduction
with r. CRC press.
Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Reproducible
Research in R.” In Implementing Reproducible
Computational Research, edited by Victoria Stodden, Friedrich
Leisch, and Roger D. Peng. Chapman; Hall/CRC.
———. 2015. Dynamic Documents with R and Knitr. 2nd
ed. Boca Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.
———. 2016. Bookdown: Authoring Books and Technical Documents with
R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/bookdown.
———. 2023a. Bookdown: Authoring Books and Technical Documents with r
Markdown. https://CRAN.R-project.org/package=bookdown.
———. 2023b. formatR: Format r Code Automatically. https://github.com/yihui/formatR.
———. 2023c. Knitr: A General-Purpose Package for Dynamic Report
Generation in r. https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown:
The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R
Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook.
Zou, Hui. 2006. “The Adaptive Lasso and Its Oracle
Properties.” Journal of the American Statistical
Association 101 (476): 1418–29.
Zou, Hui, and Trevor Hastie. 2005. “Regularization and Variable
Selection via the Elastic Net.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 67 (2):
301–20.